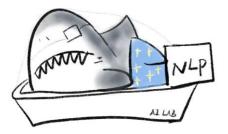
Incorporating Diffusion Models into Conditional Text Generation

Speaker: Shansan Gong

Shanghai AI Lab hisansas@gmail.com



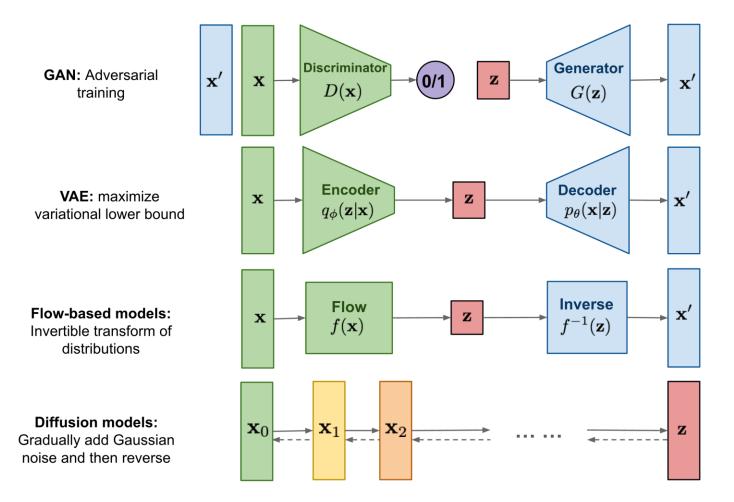
https://summeer.github.io/

Contents

- Preliminary knowledge about diffusion models
- Related work about text generation using diffusion models
- DiffuSeq and connections to NAR/AR models
- Follow up works
- Conclusion and future work

1 Preliminary - Generative models

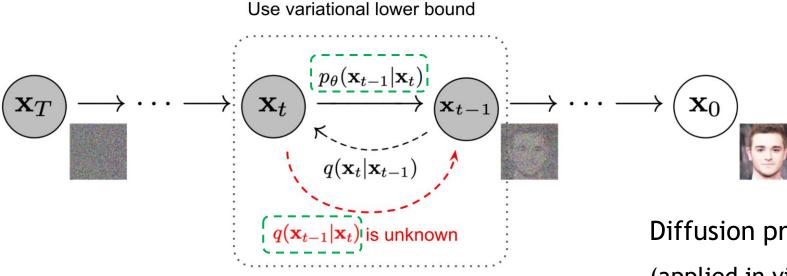
Different types of generative models



- GAN:
 - unstable training
- VAE, Flow-based:
 - rely on latent variable
- Diffusion model:
 - Many middle states, diversity, slower
 - Consistency model:
 - generates in a single step

1 Preliminary - Diffusion process

Forward and backward process



← forward: add noise

 \rightarrow backward: learn to denoise

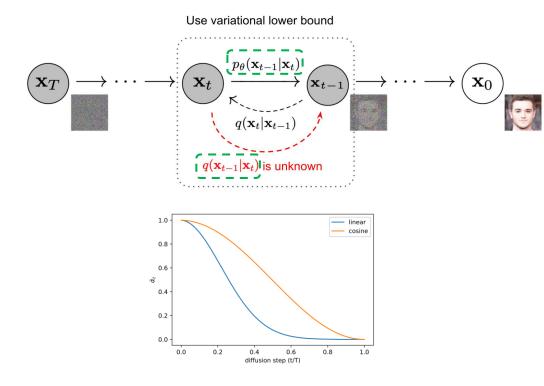
Diffusion process in continuous space

(applied in vision, audio, time series and etc....)

- [1] https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
- [2] <u>https://github.com/heejkoo/Awesome-Diffusion-Models</u>
- [3] https://benanne.github.io/2022/05/26/guidance.html

1 Preliminary - Diffusion process

Detailed derivation



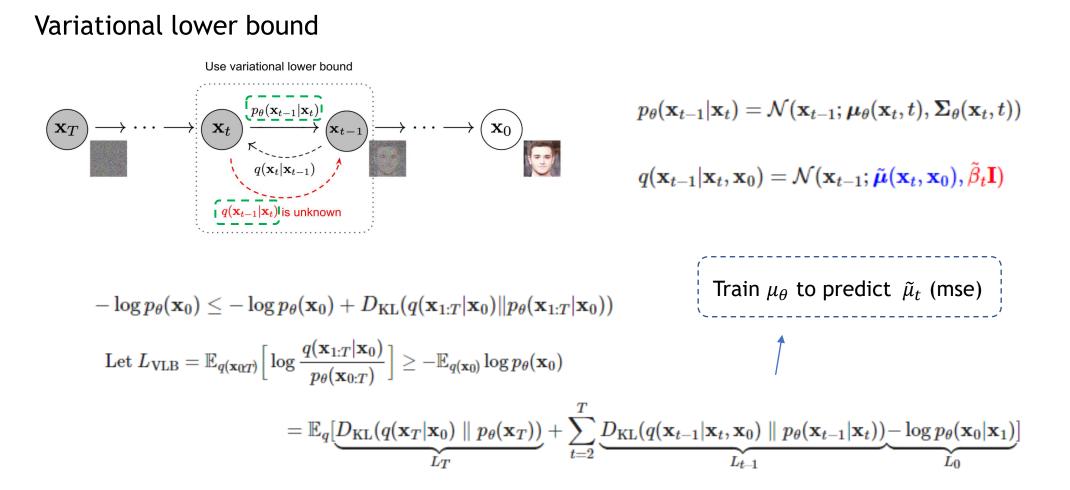
$$\begin{aligned} & \alpha_t = 1 - \beta_t \\ & \alpha_t = 1 - \beta_t \\ & \alpha_t = 1 - \beta_t \\ & \bar{\alpha}_t = \prod_{i=1}^t \alpha_i \\ & \bar{\alpha}_t = \prod_{i=1}^t \alpha_i \\ & \bar{\alpha}_t = \prod_{i=1}^t \alpha_i \\ & p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_\theta(\mathbf{x}_t, t), \boldsymbol{\Sigma}_\theta(\mathbf{x}_t, t)) \\ & q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0) = q(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{x}_0) \frac{q(\mathbf{x}_{t-1} | \mathbf{x}_0)}{q(\mathbf{x}_t | \mathbf{x}_0)} \\ & q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \tilde{\boldsymbol{\mu}}(\mathbf{x}_t, \mathbf{x}_0), \tilde{\boldsymbol{\beta}}_t \mathbf{I}) \end{aligned}$$

$$ilde{oldsymbol{\mu}}_t(\mathbf{x}_t,\mathbf{x}_0) = rac{\sqrt{lpha_t}(1-ar{lpha}_{t-1})}{1-ar{lpha}_t}\mathbf{x}_t + rac{\sqrt{ar{lpha}_{t-1}eta_t}}{1-ar{lpha}_t}\mathbf{x}_0$$

[1] Noise-conditioned score network (NCSN; Yang & Ermon, 2019)

[2] Denoising diffusion probabilistic models (DDPM; Ho et al. 2020)

1 Preliminary - Diffusion process



1 Preliminary: Diffusion process

Diffusion process in summary:

Algorithm 1 Training

1: repeat

- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \mathbf{z}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2$$

6: **until** converged

Algorithm 2 Sampling

1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 2: for t = T, ..., 1 do 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \mathbf{z}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

- Δ Forward process:
 - $\circ \quad \mathbf{x}_0 \sim q(\mathbf{x}) \rightarrow \mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$

•
$$q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

- △ Reverse process:
 - $\circ \quad p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}) = \mathcal{N}(\mathbf{x}_{t-1}; \mu_{\theta}(\mathbf{x}_{t}, t), \sigma_{\theta}(\mathbf{x}_{t}, t))$

•
$$q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = q(\mathbf{x}_t|\mathbf{x}_{t-1}, \mathbf{x}_0) \frac{q(\mathbf{x}_{t-1}|\mathbf{x}_0)}{q(\mathbf{x}_t|\mathbf{x}_0)}$$

Δ Training loss:

- $\circ \quad L_t = D_{KL}(q||p_\theta)$
- Parameterization of $L_t =$

 $\mathbb{E}_{\mathbf{x}_0}(||(\mathbf{x}_0 - f_{\theta}(\mathbf{x}_t, t))||^2)$

2 Related work - Discrete space

Unlike vision or audio domain, text is discrete, can be regarded as categorical vectors

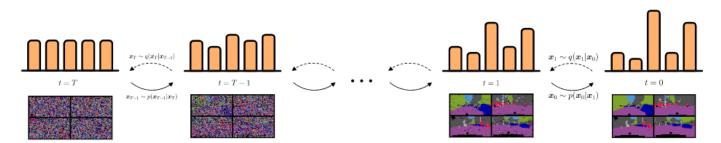
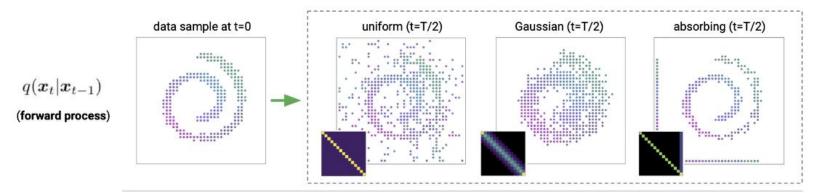


Figure 2: Overview of multinomial diffusion. A generative model $p(x_{t-1}|x_t)$ learns to gradually denoise a signal from left to right. An inference diffusion process $q(x_t|x_{t-1})$ gradually adds noise form right to left.

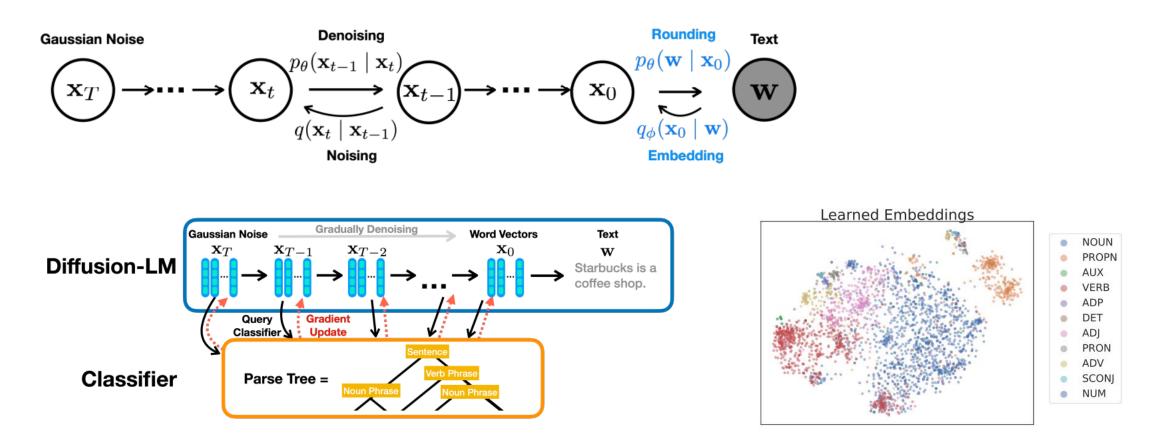


[1] Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions, NeurIPS, 2021[2] Structured Denoising Diffusion Models in Discrete State-Spaces (D3PM), NeurIPS, 2021

Incorporating Diffusion Models into Conditional Text Generation · SJTU CS Global Lunch

2 Related work - Diffusion-LM

In word embedding space; classifier-guided; generation with constraints

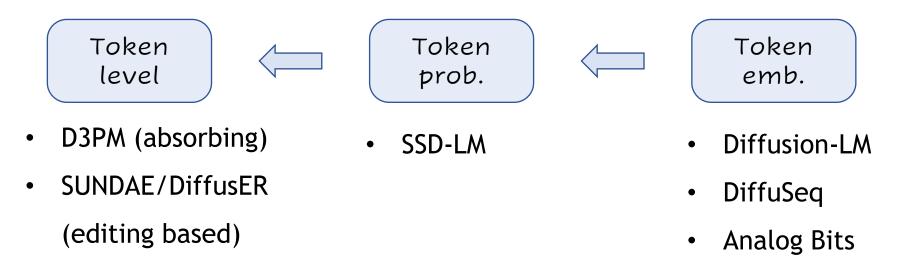


[1] Diffusion-LM Improves Controllable Text Generation, NeurIPS, 2022

2 Related work - Text related

Text modeling

- Text-to-image: two-stage or jointly training, with one-side fixed
- Pure text modeling:



[1] Step-unrolled Denoising Autoencoders for Text Generation, ICLR, 2022

[2] SSD-LM: Semi-autoregressive Simplex-based Diffusion Language Model for Text Generation and Modular Control, 2022

[3] Analog Bits: Generating Discrete Data using Diffusion Models with Self-Conditioning, 2022

Incorporating Diffusion Models into Conditional Text Generation · SJTU CS Global Lunch

Page. 10 / 27

2 Related work - Classifier-free

Text-to-image: embedding space alignment;

Classifier-free training: take extra input argument for f_{θ}

Algorithm 1 Training. WaveGrad directly conditions on the continuous noise level $\sqrt{\bar{\alpha}}$. *l* is from a predefined noise schedule.

1: repeat

2: $y_0 \sim q(y_0)$ 3: $s \sim \text{Uniform}(\{1, \dots, S\})$ 4: $\sqrt{\bar{\alpha}} \sim \text{Uniform}(l_{s-1}, l_s)$ 5: $\epsilon \sim \mathcal{N}(0, I)$ 6: Take gradient descent step on $\nabla_{\theta} \| \epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}} y_0 + \sqrt{1 - \bar{\alpha}} \epsilon, x, \sqrt{\bar{\alpha}}) \|_1$ 7: **until** converged

[1] GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models, 2021

[2] WaveGrad: Estimating Gradients for Waveform Generation, ICLR, 2021

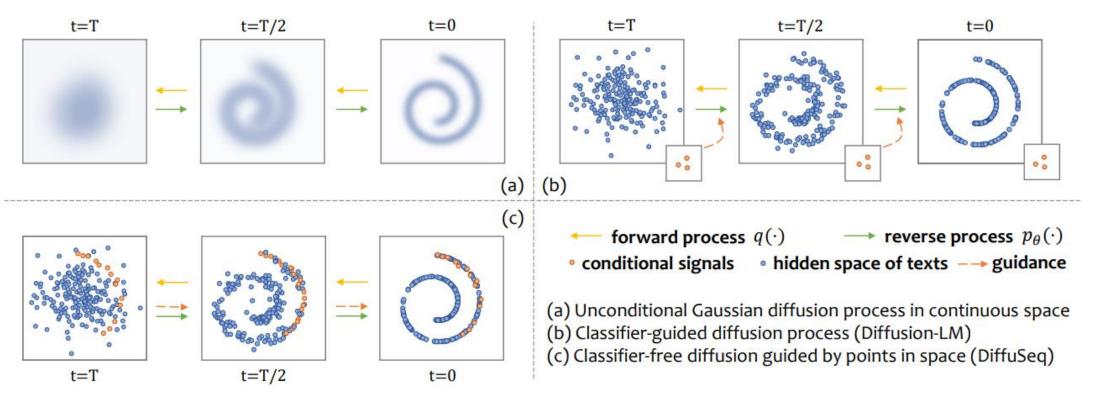
[3] Classifier-Free Diffusion Guidance, NeurIPS workshop, 2021

From unconditional models to conditional models:

Seq2Seq tasks: $x \rightarrow y$

DiffuSeq Git Repo

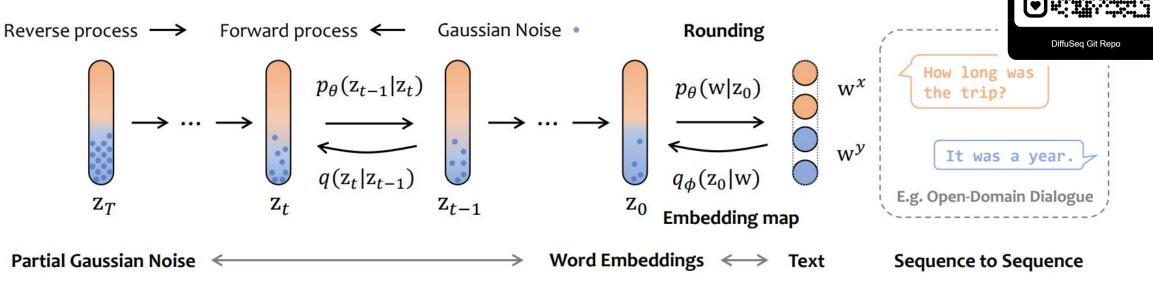
Diffusion-LM (classifier-guided) v.s. DiffuSeq (classifier-free)



[1] DiffuSeq: sequence to sequence text generation with diffusion models, ICLR, 2023

Incorporating Diffusion Models into Conditional Text Generation - SJTU CS Global Lunch

Technical details:



- Δ Forward Process with Partial Noising:
 - $q(\mathbf{z}_0|\mathbf{w}^{x\oplus y}) = \mathcal{N}(\text{EMB}(\mathbf{w}^{x\oplus y}), \beta_0 \mathbf{I}); \mathbf{z}_t = \mathbf{x}_t \oplus \mathbf{y}_t$
- Δ Reverse Process with Conditional Denoising:

•
$$L_t = \mathbb{E}_{\mathbf{x}_0, \mathbf{y}_0} \left(|| (\mathbf{y}_0 - f_{\theta}^{\sim}(\mathbf{z}_t, t)) ||^2 \right)$$

- Δ Training:
 - importance sampling
- Δ Inference:
 - Rounding to embeddings
 - Anchoring input signals

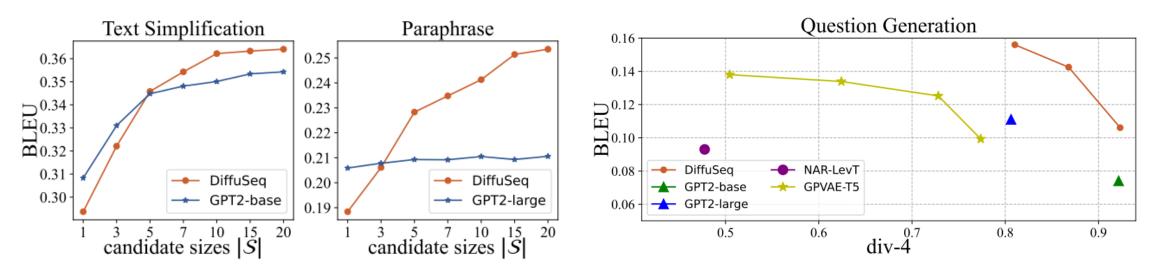
Four tasks: Dialogue, QG, Text Simplification, Paraphrase Three groups of baselines: Plain encoder-decoder, PLMs, NAR

Tasks	Methods	BLEU↑	R-L↑	Score↑	dist-1↑	selfB \downarrow / div-4 \uparrow	Len
	GRU-attention [°]	0.1894	0.5129	0.7763	0.9423	0.9958/0.3287	8.30
	Transformer-base [°]	0.2722	0.5748	<u>0.8381</u>	0.9748	0.4483/0.7345	11.2
Paraphrase	GPT2-base FT •	0.1980	0.5212	0.8246	0.9798	0.5480/0.6245	9.67
	GPT2-large FT •	0.2059	0.5415	0.8363	0.9819	0.7325/0.5020	9.53
	GPVAE-T5 •	0.2409	0.5886	0.8466	0.9688	0.5604/0.6169	9.60
	NAR-LevT [‡]	0.2268	0.5795	0.8344	0.9790	0.9995/0.3329	8.85
	DIFFUSEQ (Ours) [‡]	0.2413	<u>0.5880</u>	0.8365	<u>0.9807</u>	<u>0.2732</u> / <u>0.8641</u>	11.2

Comparable quality, better diversity

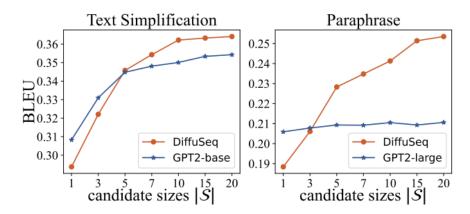
3 DiffuSeq - Experiment analysis

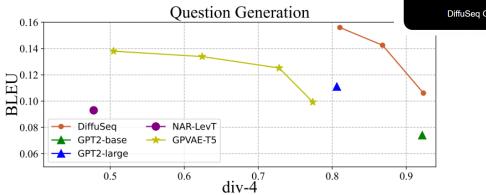
Diversity Ensures Quality



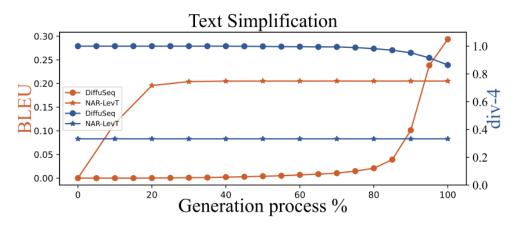
3 DiffuSeq - Experiment analysis

Diversity Ensures Quality



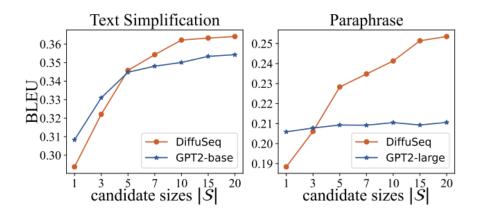


Step-wise Analysis against Iterative NAR

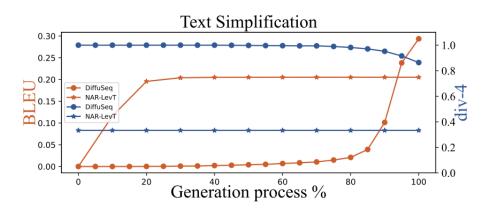


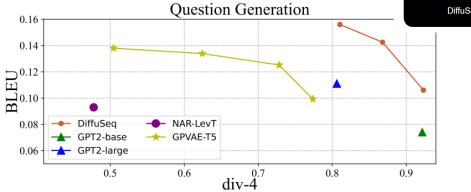
3 DiffuSeq - Experiment analysis

Diversity Ensures Quality

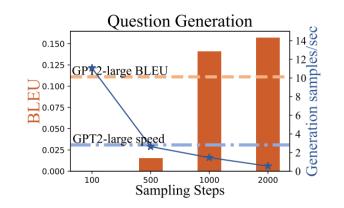


Step-wise Analysis against Iterative NAR



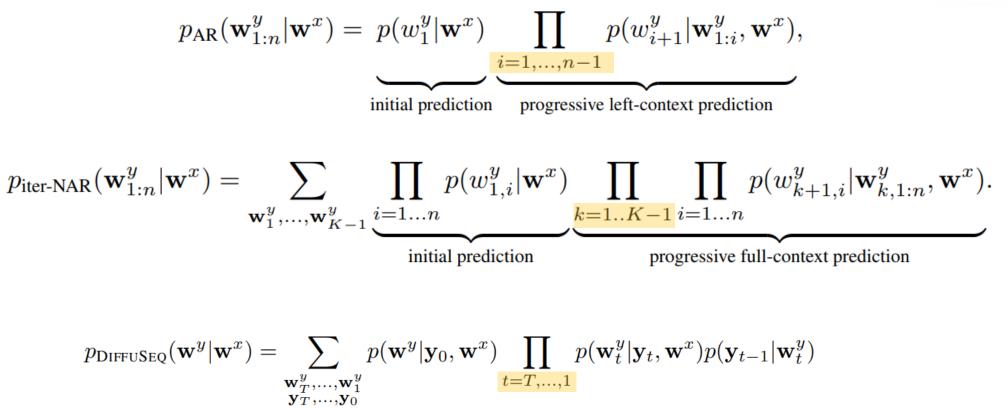


Inference Speed



Incorporating Diffusion Models into Conditional Text Generation · SJTU CS Global Lunch

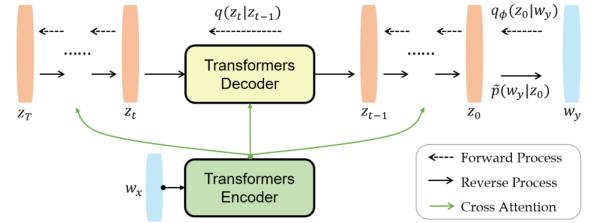
AR/iter-NAR/DiffuSeq: Generation process is along with different dimensions:



4 Follow-up works - SeqDiffuSeq

Intuition:

 explore diffusion models with encoder-decoder Transformers architecture for sequence-tosequence generation.



SeqDiffuSeq: Text Diffusion with Encoder-Decoder Transformers

Hongyi Yuan^{12*}, Zheng Yuan², Chuanqi Tan², Fei Huang², Songfang Huang² ¹Tsinghua University, ²Alibaba Group yuanhy20@mails.tsinghua.edu.cn {yuanzhen,chuanqi.tcq,f.huang,songfang.hsf}@alibaba-inc.com

4 Follow-up works - SeqDiffuSeq

Intuition:

• explore diffusion models with encoder-decoder Transformers architecture for sequence-tosequence generation.

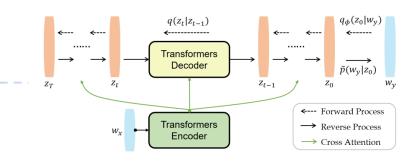
Main contributions:

- Self-conditioning: the denoising function takes previously estimated samples z_0^t as auxiliary inputs.
- Adaptive noise schedule: set different noise schedules for tokens at different positions according to losses

Concerns: diversity

SeqDiffuSeq: Text Diffusion with Encoder-Decoder Transformers

Hongyi Yuan¹²*, Zheng Yuan², Chuanqi Tan², Fei Huang², Songfang Huang² ¹Tsinghua University, ²Alibaba Group yuanhy20@mails.tsinghua.edu.cn {yuanzheng.yuanzhen,chuanqi.tcq,f.huang,songfang.hsf}@alibaba-inc.com



4 Follow-up works - SeqDiffuSeq

Results:

- Experiments on translation tasks
- Speed

	BLEU	BLEU-1/2/3/4
SeqDiffuSeq	30.31	62.73/36.94/24.07/16.09
-Adaptive Noise Schedule	28.94	61.39/35.44/22.82/15.12
-Self-Conditioning	<mark>25.74</mark>	58.74/31.97/19.67/12.44

Table 3: Ablation studies on IWSLT14 DE-EN validation set.

	Time	Acceleration
-	317 sec.	-
SeqDiffuSeq	89 sec.	×3.56

Table 4: Time needed for inference on QQP.

Intuition:

 pre-training has been proven effective and encoder-decoder model architecture is the most popular pre-train paradigm.

Main contributions:

• First pre-trained model using CPD (continuous paragraph denoise)

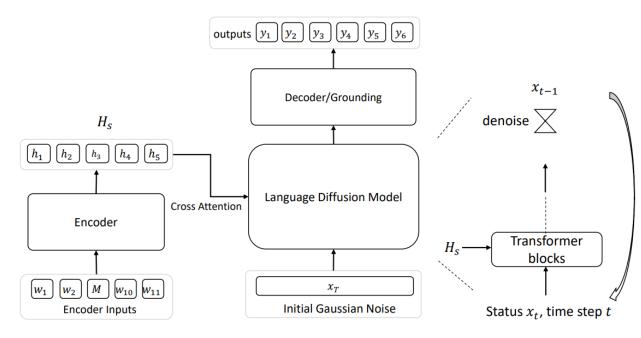
Text Generation with Diffusion Language Models: A Pre-training Approach with Continuous Paragraph Denoise

Intuition:

 pre-training has been proven effective and encoder-decoder model architecture is the most popular pre-train paradigm.

Main contributions:

First pre-trained model using CPD (continuous paragraph denoise)



Incorporating Diffusion Models into Conditional Text Generation · SJTU CS Global Lunch

4 Follow-up works - GENIE

Results:

• Experiments on summarization tasks

Methods	Pattern	XSUM					
Wiemous	1 attern	ROUGE-1	ROUGE-2	ROUGE-L	OVERALL		
NAT (Gu et al., 2017)		24.0	3.9	20.3	16.1		
iNAT (Lee et al., 2018)		24.0	4.0	20.4	16.1		
CMLM (Ghazvininejad et al., 2019)	NAD	23.8	3.6	20.2	15.9		
LevT (Gu et al., 2019b)	INAK	24.8	4.2	20.9	16.6		
BANG (Qi et al., 2021)		32.6	9.0	27.4	23.0		
ELMER (Li et al., 2022a)		38.3	14.2	29.9	27.5		
LSTM (Greff et al., 2017)		25.1	6.9	19.9	17.3		
Transformer (Vaswani et al., 2017b)	b) AR	30.7	10.8	24.5	22.0		
MASS (Song et al., 2019)	٨D	39.7	17.2	31.9	29.6		
BART (Lewis et al., 2019)	AK	39.8	17.2	32.2	29.7		
ProphetNet (Qi et al., 2020)		39.9	17.1	32.1	29.7		
BANG (Qi et al., 2021)		41.1	18.4	33.2	30.9		
InsT (Stern et al., 2019)		17.7	5.2	16.1	13.0		
iNAT (Lee et al., 2018)		27.0	6.9	22.4	18.8		
CMLM (Ghazvininejad et al., 2019)		29.1	7.7	23.0	20.0		
LevT (Gu et al., 2019b)	Semi-NAR	25.3	7.4	21.5	18.1		
BANG (Qi et al., 2021)		34.7	11.7	29.2	25.2		
GENIE (w/o pre-train)		38.9	17.5	31.0	29.1		
GENIE		42.9	21.4	35.1	33.2		

Table 1. Results of Semi-NAR, NAR and AR on XSUM. Index **OVERALL** represents the average value of **ROUGE-1**, **ROUGE-2** and **ROUGE-L**. It should be noted that GENIE belongs to Semi-NAR.

Incorporating Diffusion Models into Conditional Text Generation · SJTU CS Global Lunch

Intuition:

• Continuous diffusion models suffer from a slow runtime and discrete diffusion models are under-explored.

Main contributions:

 route-and-denoise process: at each iteration, each token within the sequence is either denoised or reset to noisy states according to an underlying stochastic routing mechanism

A Reparameterized Discrete Diffusion Model for Text Generation

Lin Zheng¹ Jianbo Yuan² Lei Yu³ Lingpeng Kong¹

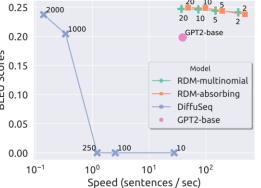
¹Department of Computer Science, The University of Hong Kong ²ByteDance Inc. ³DeepMind. Correspondence to: Lin Zheng <linzheng@connect.hku.hk>.

Results:

• Experiments on machine translation tasks

Table 1: BLEU score comparisons on IWSLT14 DE-EN, WMT14 EN-DE, and WMT16 EN-RO benchmarks. * denotes results reported from previous work.

	Model	# Iterations	IWSLT Vanilla	14 DE-EN Reparam.	WMT1 Vanilla	6 EN-RO Reparam.	WMT1 Vanilla	4 EN-DE Reparam.
Continuous Diffusion	CDCD (Dieleman et al., 2022)	200	-		_		20.0*	
	Multinomial Diffusion (Hoogeboom et al., 2021)	2	23.05	28.01	26.61	30.16	4.28	21.43
		4	24.24	30.57	27.81	31.70	4.31	24.05
		10	21.28	32.23	25.25	33.00	6.94	25.63
		16	20.59	32.58	24.36	33.11	6.07	25.64
Discrete Diffusion		25	20.06	32.84	23.94	33.31	3.69	26.04
Distrete Dirusion	Absorbing Diffusion (Austin et al., 2021)	2	25.24	27.60	27.24	30.72	16.46	21.00
		4	26.93	31.47	29.16	32.60	19.48	24.26
		10	28.32	33.91	30.41	33.38	21.62	26.96
		16	28.38	34.41	30.79	33.82	22.07	27.58
		25	28.93	34.49	30.56	33.99	22.52	27.59
Auto-regressive Models	Transformer-base (Vaswani et al., 2017)	n.a.	3	4.51	3	4.16	2	7.53



- Diffusion models as a new generation paradigm bring new possibilities to AR supremacy in text generation domain
 - Diverse
 - Editable
- Future work: inference speed and generation quality

Thank you for listening!

Speaker: Shansan Gong

DiffuSeq Git Repo

hisansas@gmail.com

Shanghai Al Lab

https://summeer.github.io/

https://github.com/Shark-NLP/DiffuSeq

