Unifying Dynamic Multi-Domain Product Categorization

Shansan Gong^{*1}, Zelin Zhou^{*1}, Shuo Wang², Fengjiao Chen², Xiujie Song¹, Xuezhi Cao², Yunsen Xian², Kenny Q. Zhu¹

¹Shanghai Jiao Tong University, ²Meituan Inc. (*equal contribution)

We propose Dynamic Multi-Domain Product Categorization (**DMPC**) problem:

Multi-domain taxonomies challenge: e-commerce platforms usually maintain multiple business lines with relatively independent taxonomies;

Transferable and Efficient:

(2)

Taxonomy evolving challenge: with the expansion and reorganization of businesses, each category of taxonomy keeps evolving.

Conventional industry approaches (separately trained classifiers):

- under-utilize the cross-domain data and their shared knowledge;
- raise the expenses of maintenance for different classifiers.

Methods - TaLR framework

We reformulate the canonical text classification problem as a text relevance matching problem. Our TaLR (Taxonomy-agnostic Label Retrieval) framework is structured into two stages: Retrieval and Reranking. Mapping scorer and contrastive learning are two plug-in modules, both of which are associated with meta concepts.

Datasets

We propose and release Dynamic Multi-Domain Datasets with 3 business lines.

Beyond the category

An example from dataset

BERT Multi-task	68.00	80.27	50.28	44.29
BERT Multi-task+🌲	67.79	81.37	49.77	39.83
(b): TaLR	86.23	88.16	82.48	85.25
TaLR ablation test				
(c): (b) (-) CL	85.26	86.83	81.75	85.13
(d): (b) (-) MS	84.63	86.59	80.13	84.71
(e): (b) (-) CL&MS	82.82	83.85	79.15	84.71

87.43

80.64

79.77

The accuracy on two d	ynamic test sets. Δ is t	he change of a	accuracy after ev	volvin
-----------------------	---------------------------------	----------------	-------------------	--------

Metho	Methods	QD-divide		QD-integrate				
	wieulous	Before	After	Δ	Before	After	Δ	
	BERT-matching	6.66	11.95	+5.29	13.39	2.23	-11.16	-
	BERT-few-shot	90.51	43.54	-46.96	86.79	50.16	-36.53	
	TaLR	90.11	69.71	-20.40	85.20	81.48	-3.72	

Validate the effectiveness of TaLR to tackle taxonomy evolving challenge:

- TaLR is **robust** to taxonomy evolving
- TaLR can better **transfer** to new taxonomy

	concatenate concept text after product title
)	ablate cretain modules

MS: mapping scorer, CL: contrastive learning

(f): (b) (-) CL&MS + **(b)** 84.38

Datasets associated with this paper are released at <u>https://github.com/ze-lin/TaLR</u>.

ADAPT@SJTU · Meituan · ACL 2023 Industry Track